
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

REASONING BY ANALOGY USING
HOLOGRAPHIC CONCEPTUAL PROJECTION

by

Yilmaz Degirmenci

September 2002

 Thesis Advisor: Neil Rowe
 Second Reader: John Hiles

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Reasoning by Analogy Using Holographic Conceptual Projection

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT
This thesis discusses the designing of an architecture which mimics a human thought mechanism. The architecture is called a
Holographic Conceptual Projection, which uses analogy and dynamic pattern matching combined with some natural-language
understanding. Our main hypothesis is that we project our way of thinking into words and sentences which we manipulate
when thinking verbally. This means we can exploit the structure of sentences to build an algorithm that models our thought
mechanism. In our Holographic Conceptual Projection Architecture we give examples of every word within the context
patterns. The patterns contain sentences that describe the “condition”, “desired situation”, “proposition” and “outcome” of the
concept. The concept’s patterns are then compared with new cases to see analogies. This comparison is done with dynamic
generalization and specialization techniques. Finally after building an implementation, we tested it on an intelligent file-
management system and an image-processing application.

15. NUMBER OF
PAGES 60

14. SUBJECT TERMS
Artificial Intelligence, Reasoning by Analogy, Conceptual Projection, Means-Ends
Analysis, Linguistics.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited.

REASONING BY ANALOGY USING
HOLOGRAPHIC CONCEPTUAL PROJECTION

Yilmaz Degirmenci

First Lieutenant Turkish Army
B.S. Military Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Yilmaz Degirmenci

Approved by: Neil Rowe

Thesis Advisor

John Hiles
Second Reader

Chris Eagle
Chairman, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis discusses the designing of an architecture which mimics a human

thought mechanism. The architecture is called a Holographic Conceptual Projection,

which uses analogy and dynamic pattern matching combined with some natural-language

understanding. Our main hypothesis is that we project our way of thinking into words and

sentences which we manipulate when thinking verbally. This means we can exploit the

structure of sentences to build an algorithm that models our thought mechanism. In our

Holographic Conceptual Projection Architecture we give examples of every word within

the context patterns. The patterns contain sentences that describe the “condition”,

“desired situation”, “proposition” and “outcome” of the concept. The concept’s patterns

are then compared with new cases to see analogies. This comparison is done with

dynamic generalization and specialization techniques. Finally after building an

implementation, we tested it on an intelligent file-management system and an image-

processing application.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1

II. PREVIOUS WORK...5

III. DATA STRUCTURES IN OUR INFERENCE PROGRAM11

IV. DESCRIPTION OF THE PROGRAM..17
A. CASE 1 PROJECTION...19
B. CASE 2 HIERARCHY IN PROJECTION ...24

V. ASSOCIOTING CONCEPTS TO JAVA FUNCTIONS27
A. CASE 3 ABILITY TO USE JAVA FUNCTIONS30
B. CASE 4 TRIGGERING MECHANISM..31
C. SEEING INTELLIGENTLY..32

VI. FUTURE STUDY...37

VII. CONCLUSION ..39

LIST OF REFERENCES..41

INITIAL DISTRIBUTION LIST ...43

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

LIST OF FIGURES

Figure 3.1 Data Structures in HCPA. ..11
Figure 4.1 Flow Diagram ..23

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 3.1 Root Database ..12
Table 3.2 Concept Database...13
Table 3.3 Event Database...14
Table 4.1 Concept Database...17
Table 4.2 Event Database...18
Table 4.3 Input Table ...19
Table 4.4 Concept Block..20
Table 4.5 Concept Block..20
Table 4.6 Concept Block..21
Table 4.7 Output Table ..22
Table 4.8 Event Database...22
Table 4.9 Input Table ...24
Table 4.10 Output Table ..25
Table 5.1 Root Database ..27
Table 5.2 Concept Database...28
Table 5.3 Event Database...29
Table 5.4 Input Table ...30
Table 5.5 Input Table ...31
Table 5.6 Input Table ...32

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

I must express my deepest gratitude and appreciation to Professor Neil Rowe for

his guidance, encouragement, and patience during this most challenging part of my

education at the Naval Postgraduate School. I wish to thank Professor John Hiles for his

valuable suggestions and motivational leadership. I am grateful to the Turkish Army for

providing me with the privilege of studying at NPS.

My special thanks go to my friend Richard Woodmaster for being a beacon in all

ways. I dedicate this research to my mother Esma Muruvvet Degirmenci for being a

endless source of Love and Light.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I: INTRODUCTION

Throughout history, many researchers from different disciplines have studied

mind mechanisms trying to describe and systemize them. Today many researchers are

exploring areas, such as the philosophy of mind, artificial intelligence, cognitive science,

neuroscience, and psychology to solve this mystery. Among these areas, researchers are

working to describe “verbal thinking”.

For our research, we observed the mechanisms within our own mind before

investigating and comparing our ideas with theories from other disciplines of study. We

knew that if we could describe the process of our mind mechanisms during thinking, we

could define it as an algorithm. Then using computer technology, we could code the

process. Such an algorithm could easily be applied in any area of technology.

We discovered that there are around 300 basic verbal thinking concepts that can

be the foundation for defining other concepts. For example, defining the concepts “good”

and “bad” helps explain the words “wonderful”, “excellent”, “dreadful”, or “ruined”.

Additionally, defining the concept “more” helps explain “better”, “best”, “worse” and

“worst”. This indicates that if we can build knowledge of a few key concepts, then it is

possible to add and integrate most of a dictionary.

A second aspect we learned was that the human mind perceives nothing

individually. That is, humans learn everything within structures relating to subject,

object, location, time and action. That led us to describe every single word and object

within a sentence-like structure. Then we could see that many concepts are connected to

the environment by conditions. Many concepts involve a change or motion, a desired

action or purpose, and an output. As an example, WHEN I’m at home, IF I’m hungry,

THEN I eat food, SO I become full. Here “when” corresponds to a condition, “if”

corresponds to a change, “then” to a desired action or proposition, and “so” corresponds

to result.

1

Concepts are connected in a tree-like structure: a type hierarchy. In defining this

hierarchy, we can use it to make generalizations and specializations about concepts. For

example, “Mary drinks coke” and “John drinks soda” are structurally the same. Here both

“Mary” and “John” are humans and both “Coke” and “soda” are beverages. People learn

from examples experienced in life, from which they make generalizations. Therefore

dynamic generalization and specialization must be a key feature in our algorithm.

 We used “and” and “or” to improve the ability of each part of a pattern to

describe a concept enabling us to define concepts of varying length and complexity.

Thinking also addresses a variety of specialization levels. For example, “I ate calamari

yesterday”, “I eat calamari”, “Humans eat calamari”, “Humans eat food”, and “Living

things need energy” represent different levels and aspects of the same reality. We believe

that if we define 300 basic concepts by describing them in patterns and using those

patterns as templates to compare with new cases while using generalizations and

specializations on these cases, we can get a wide range of common-sense information or

conclusions. This whole mechanism can be called “Holographic Conceptual Projection

Architecture” (HCPA). The smallest atomic element is “the clause”, and every single

clause is capable of interfacing with any clause or concept within the whole system.

 We can compare our model with case-based reasoning models. All case-based

reasoners share a common way to address a new problem: retrieve appropriate cases from

its memory, modify a retrieved case applicable to the current situation, apply the

transformed case to the new problem, and save the solution with a record of its success or

failure for future use. (Luger & Stubblefield, 1999, Section 6.4.1) However our approach

will use reasoning by analogy rather than the similarity calculation of case-based

reasoning. It will use a kind of forward chaining (Wallis & Moss, 1995) to make

inference.

We divided our research into two phases. The first phase created a prototype

program to demonstrate the ideas explained above using Delphi (Object Pascal). The

second phase applied that algorithm to a real problem demonstrating the validity and

practicality of the algorithm. Next we built a framework for knowledge of Java functions

for image processing, which draws and recognizes images converting them to a 3-

2

dimensional model. This application requires only 50 to 100 concepts and shows the

features and power of the algorithm.

Chapter II introduces some related work in artificial intelligence; each work

describes a different aspect of analogy. Chapter III describes the design and the data

structures used in our program. Chapter IV explains how the design works by using

examples from a test program. Chapter V shows how concepts in this architecture can be

associated to Java functions. Chapter VI describes how this work can be improved as a

future work. Chapter VII gives the conclusions of this research.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

 II: PREVIOUS WORK

A wide range of work is relevant to our study. In his dialogue The Republic, Plato

introduced “the allegory of the cave and divided line.” For Plato, human beings live in a

world of visible and intelligible things. The “visible world” is what surrounds humans:

what is seen, what is heard, and what is experienced. This visible world is a world of

change and uncertainty. The “intelligible world” is composed of the unchanging products

of human reason; anything arising from reason alone, such as abstract definitions or

mathematics, makes up this intelligible world, which is the world of reality. The

intelligible world contains the eternal “forms” (idea in Greek) of things; the visible world

is the imperfect and changing manifestation in this world of these unchanging forms. For

example, the “form” or “idea” of a chair is intelligible, abstract, applies to all chairs, and

it never changes. “A chair is a piece of furniture consisting of a seat, legs, back, and often

arms, designed to accommodate one person” (American Heritage Dictionary, 1992).

However chairs can vary wildly among themselves, such as a chair with three or four

legs, a chair with wheels, an armchair, or a rocker. An individual chair is a physical,

changing object that can easily cease to be a chair (if, for instance, it gets broken); the

form of a chair or “chairness” never changes. As a physical object, a chair only makes

sense in that it can be referred to the “idea” of chairness. In our work a Concept Database

holds such abstract definitions of concepts; whereas, an Event Database defines the

current state of the world.

In psychology, human learning is divided into six general categories:

conditioning, motor learning, discrimination learning, verbal learning, problem solving,

and concept learning (Fogiel, 1999). Our work domain involves only the last three

categories: verbal learning, problem solving, and concept learning of psychology.

Learning verbal associations provides an important link between elementary non-verbal

learning process, language, and thought. Human problem-solving is regarded as

“thinking” with several stages: the problem is stated, evidence for a solution is arranged,

an idea emerges, alternatives are evaluated, and the solution is verified. Concept learning

involves attaching verbal labels to the phenomena of the world.

5

 For Pinker (2000) irregular and regular forms in language are the outcome of two

mental subsystems, “words” and “rules”, expressing an event or state that took place in

the past with both being equally important. In this work, we define words and their

hierarchies in a Root Database and rules to build sentence structures and concept blocks

in other data structures. (Bernstein, 1977) notes, “You won’t find it in most dictionaries,

but flied is the past tense of fly in one specialized field: baseball. You could not say of the

batter who hoisted a can of corn to the center fielder that he “flew out”; you must say he

“flied out”.” Therefore, we argue that every verb must be defined in a whole sentence-

like structure containing the subject, object, location, time, and instrument defining the

condition of that verb.

Conceptual Dependency Theory (Schank and Rieger, 1974) offers a set of four

primitive conceptualizations from which it is claimed that the entire world of meaning or

“semantics” is built:

ACTs actions

PPs objects (picture producers)

AAs modifiers of actions (action aiders)

PAs modifiers of objects (picture aiders)

All actions are assumed to be comprised of one or more of these primitive ACTs:

6

ATRANS transfer a relationship (give)

PTRANS transfer physical location of an object (go)

PROPEL apply physical force to an object (push)

MOVE move body part by owner (kick)

GRASP grab an object by an actor (grasp)

INGEST ingest an object by an animal (eat)

EXPEL expel from an animal’s body (cry)

MTRANS transfer mental information (tell)

MBUILD mentally make new information (decide)

CONC conceptualize or think about an idea (think)

SPEAK produce sound (say)

ATTEND focus sense organ (listen)

These primitives are used to describe the meaning of structures with case relations

and other kinds of associations involving objects. Conceptual-dependency relationships

are conceptual syntax rules constituting a grammar of meaningful semantic relationships.

This theory argues that “ACTs” are the key elements to describe a concept. In our work

we describe concepts in a Concept Database using verbs as the key elements to describe

those concepts. We built connections among verbs, subjects, objects, and other elements

by defining them within a “clause structure.”

Carbonell (1983) proposes a theory of logical problem-solving using analogy. It

outlines a “logical transformation process” that is developed to extract knowledge from

past successful problem-solving situations bearing a strong similarity to the current

problem. The theory expands standard “means-ends analysis” with a reminder and

transformation mechanism. The reminder mechanism exploits the knowledge of solutions

to previous problems by comparing the differences in the initial and final state, the path

constraints, and the operator preconditions of the present and previous problem spaces.

The other mechanism transforms the old solution sequence into one that satisfies the

criteria of the new problem. As an example, the paper explains the monkey-and-bananas

and experimenter-and-bananas problem from the viewpoint of the analogical problem-

solving model:

A monkey watches a behavioral psychologist pick up a wooden
box and place it under a hook in the ceiling. Next, the experimenter
climbs on the box, places some bananas on the hook, climbs off the box,
and returns the box to its original location. Then, the experimenter
releases the (hungry) monkey and leaves the room. Can the monkey
benefit from having observed the experimenter?

 From the point of view of analogical problem-solving, the monkey's

problem is “initial state” = monkey on the floor, bananas on the ceiling, box in

the room; “final state” = monkey in possession of the bananas; “path

7

constraints” = physical abilities of the monkey. However, the solution to the

experimenter's decision will not directly help the monkey.

At first the monkey was able to use standard means-ends analysis to solve the

problem (compare the current state to the goal state, choose an operator that reduces the

difference, apply the operator if possible, if not solve a sub-problem first and then resume

work on the original problem). Therefore, the monkey who could select the operator

GET-OBJECT applied to bananas. This operator suffers an unsatisfied precondition: The

monkey cannot reach the bananas. As a result, the active subgoal becomes to reach the

ceiling where the bananas are located. If the monkey recalls the observation of the

experimenter, it may realize that the problem of reaching the ceiling has already been

solved. The monkey may apply the “parameter-substitution T-operator” (substituting

"monkey" for "experimenter") and, optionally, the “solution-sequence truncation T-

operator” (eliminating the need to return the box to its original location after having used

it). This problem-solving process in the “T-space” results in a plan that the monkey can

apply directly to reach the bananas. Our work uses a similar approach of “logical

transformation” to transform from previously defined cases in a Concept Database to

newly encountered cases and to update the current state of the world according to that

new case. Nevertheless our work addresses inference and not planning.

As an example of a quite different “connectionist” approach to analogy, Mitchell

(1993) is a model based on the premise that analogy-making is fundamentally a high-

level perceptual process in which the interaction of perception and concepts give rise to

“conceptual slippages” that allow analogies to be made. With the strategy of “isolate and

idealize”, that approach is applied to a computer model called Copycat (Hofstadter,

1984). In Copycat, both concepts and high-level perception are emergent phenomena,

arising from large numbers of low-level, parallel, non-deterministic activities. A sample

problem in a Copycat computer model might be “abc => abd ijk => ?”. Here, “abc” is

the “initial state”, “ijk” is the “target state”, and “abd” is the “modified string”. By using

the program, the operator supposingly discovers the “same way” to come up with a

reasonable result.

8

There are four mechanisms within a Copycat computer model:

1) The “Slipnet” is a network of nodes where concepts such as A-Z, 1-5,

left, right, sameness, and etc. reside. A node is activated when instances

of it are perceived by “codelets” such as a “modified-string replacement

for the “b” in “abc”, a “bond” from the “j” to the “k”, and a

“correspondence” between the “c” and the “k”.” During a run of the

program on a given problem, the probability that a node will be brought

in or be considered further by codelets is a function of the node’s

current activation level. Thus, there is no black-and-white question of

whether a given concept is consciously used at a given time; continuous

activation levels and probabilities allow different concepts to be present

to different degrees.

2) In addition to the Slipnet, where long-term concepts reside, the

“Workspace” is another data structure, in which perceptual structures

are built hierarchically on top of the “raw” input (the three strings of

letters). For example, “leftmost” as a description of “a” in “abc”, a

“successorship” bond between “a” and the “b” in “abc” are some

structures defining the relationships among concepts.

3) Codelets are stored in “Coderack.” Any run starts with a standard initial

population of bottom-up codelets (with preset urgencies changing by

probabilistic choices) on the Coderack.

4) A final mechanism “temperature” measures the degree of perceptual

organization in the system and controls the degree of randomness used

in making decisions.

Since the program is permeated with non-determinism, different answers arise on

different runs. However, although every run is different at the microscopic level, statistics

lead to far more deterministic behavior at the macroscopic level. This notion of

microscopic non-determinism resulting in macroscopic determinism suggests many

9

useful features for future study. However, our study focuses on simpler deterministic

mechanisms for analogy in analyzing their capabilities and limits.

10

III: DATA STRUCTURES FOR OUR INFERENCE PROGRAM

Our objective is to provide a word-centered mechanism reflecting the reality

within a world of words. Humans can use and learn any system primarily by analogy

techniques. However, they still do not have a general computer algorithm for analogies.

We think the only possible way is to describe examples of verbal thinking in structures

made of words. This is a natural-language approach.

 Humans have a memory where information and definitions of concepts are

stored; they have sense organs, such as ears, eyes and skin to get information from the

outside and organs, such as mouth and hands to act or communicate. All these

mechanisms are about perceiving, saving, analyzing and manipulating information. For

the sake of simplicity and ease of the model, we divided a data structure representing

memory into three parts: a Root Database, a Concept Database, and an Event or Real

World Database. Additionally we have Input (Listen) and Output (Talk) data structures to

receive and post information.

INPUT HCPA OUTPUT
TABLE TABLE

ROOTS EVENTS
CONCEPTS DATABASE DATABASE
DATABASE

 Figure 3.1 Data Structures in HCPA

11

 Root Database: This is a data structure for words and their roots. If a word is

logically implied by the meaning of another word or is a “supertype” of the word, it is the

root of that word. The ultimate root is “concept”, so all the other words in the program

are “subtypes” of concept. For example, a classroom is a room, a room is a location, and

location is a concept; and to learn is a verb, which is a concept. A word can have only

one root in our system, so no multiple inheritance is allowed. Word hierarchies permit

generalizations, specializations, and comparisons of concepts. Below are some root-

branch pairs:

 ROOT DATABASE:

ROOT BRANCH ROOT BRANCH ROOT BRANCH ROOT BRANCH
concept matter matter living-thing location room time day
concept verb living-thing plant location kitchen time now
concept time living-thing animal room classroom location home
concept location animal human room bathroom verb enjoy
concept property human Yilmaz verb eat verb possess
concept means human Jason verb drink verb have
concept event human sister matter water verb has
concept adjective human mother water beverage human friend
concept particle human father beverage Coke verb be
concept energy human I beverage Fanta verb get
concept adverb matter food verb live matter object
concept value food fruit verb change verb use
concept quantity verb move matter stone conjunction If
concept relation move go verb take conjunction then
concept conjunction go walk verb learn conjunction when
color orange move come property number location library
fruit orange property color adjective thirsty location school

 Table 3.1 Root Database

Like WordNet (Miller, 1993), our data structure allows a word to have multiple

meanings. For example orange can represent both a color and a fruit. We used our own

data structure instead of WordNet to be able to manipulate the data structure freely.

Nonetheless we can still use WordNet to build our own lexical data structure.

Concept Database: This data structure holds concept structures. We call each

row a “clause.” As explained in the Introduction, each concept can have a condition

clause (when), a change-of-situation or goal-state clause (if), and a conclusion or desired-

12

action clause (then). The “if” clause is like a goal state for that concept. The “when”

clauses define the necessary conditions for that goal state to happen. The “then” clause

defines the necessary action to obtain that goal state. The structure of concepts is a

special case of the if… then… rules in a rule-based expert system (Luger & Stubblefield,

1999). For each clause, we optionally identify subject, verb, object, location, time,

conjunction, and instrument “cases” (Allen, 1983). For example in the sentence “Today I

wrote a poem in the bookstore with my pen”, “I” is the subject, “wrote” is the verb,

“poem” is the object, “bookstore” is the location, “today” is time, and “pen” is the

instrument. Like in a “means-ends analysis”, we use cases to explain the differences

between two sentences. Below is a sample table that defines 5 concepts:

CONCEPT DATABASE:

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
1 I be classroom when
1 Jason be classroom when
1 Jason be library if
1 Jason go library then
2 I be classroom when
2 Jason be library when
2 Jason be classroom if
2 Jason come classroom then
3 I be classroom when
3 I be library if
3 I go library then
4 I get thirsty if
4 I drink water then
5 I enjoy taste if
5 I drink coke then

 Table 3.2 Concept Database

 The first concept above (lines 1 thorough 4) is an example of the concept “go,”

translated as: “When I’m in the classroom and Jason is in the classroom, if Jason changes

his location so he is in the library, that means Jason goes to the library.” The second

concept exemplifies the concept “come”, the opposite of “go.” This is translated as:

“When I’m in the classroom and Jason is in the library, if he changes his location and he

is in the classroom now, that means Jason comes to the classroom." The third concept

13

also exemplifies “go” when I change my location or someone else changes his or her

location without referencing me. A simple translation is: “When I’m in the classroom, if I

change my location and I’m in the library now, that means I go to the library.” The

fourth and fifth examples can be paraphrased as: “If I get thirsty, I drink water”, and “If I

drink coke, the reason for that is I enjoy its taste.”

We can relate the columns of our Concept Database to the case relations in

natural-language understanding (Allen, 1983). With case relations, sentences with

different syntactic structures, but with the same meaning, should get mapped to similar

structures. For example, consider the sentences “John broke the window with a hammer,”

“the hammer broke the window,” and “the window broke.” John, the hammer, and the

window play the same semantic roles in each of these sentences. John is the actor, the

window is the object, and the hammer is an instrument used in the act “breaking of the

window.”

Event – Real World Database: This data structure holds the information of the

current state of the world. The clauses here will be matched with the clauses of the

Concept Database. An example is the following:

SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
I be home with my family
my father be bathroom
my mother be kitchen
my sister be school
she drink Fanta
we live Monterey

 Table 3.3 Event Database

Input – Listen Table: This is the data structure where the new goal is described.

This is imagined as the “if” sentences or goal statements of the new case.

Output – Talk Table: The program generates a proposition or desired action for

the goal state entered in the Input Table and displayed in the Output Table. This table

works as a query for a special form of backward chaining like in Prolog (Atkin, 1999).

The major drawback of our data structure design was that it did not initially

permit giving more than one word for each column within a clause. (In Chapter V we

14

improved our design so that it permits entering more than one word for each column

within a clause.) This drawback made it impossible, for example, to refer details of the

taste to Coke or to use more complex structures such as negation or quantified variables.

On the other hand, it allowed a representation of approximately 98 % of natural-language

phenomena.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

 IV: DESCRIPTION OF THE PROGRAM

Our implementation of HCPA is in the form of a program that does pattern-

matching between the information in the memory (Concept Database), the goal

information (Input Table), and the current world state (Event Database). If certain

matches occur, the program comes up with new inferences and conclusions. We can

relate our design to the design of Prolog: the query in Prolog is input, facts are the Event

Database, and rules are the Concept Database in our design. However our inference

method is different since it uses analogy. The whole system, referred to as “projection”,

updates the information in the memory for a new case.

The following represents the present level of development for HCPA:

1) Can accept new inputs and project those changes to the Event Database

and to the Output Table.

2) Is able to monitor an up-do-date Event Database that reflects the

present state of objects in the system by making inferences according to

the information in the Event Database and updating that information

according to the Output Table after making inference.

3) Can be incorporated in other software to provide a form of natural-

language understanding that includes projection.

 The best way to understand how the program works is explaining with examples:
Let us assume that five concepts are defined in the Concept Database:

CONCEPTS DATABASE

17

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
1 I be classroom when
1 Jason be classroom when
1 Jason be library if
1 Jason go library then
2 I be classroom when
2 Jason be library when
2 Jason be classroom if
2 Jason come classroom then
3 I be classroom when
3 I be library if
3 I go library then

4 I get thirsty if
4 I drink water then

5 I enjoy taste if
5 I drink Coke then

 Table 4.1 Concept Database

Next, let us suppose the following information in the Event Database:

EVENT DATABASE
SUBJECT VERB OBJECT PLACE TIME CONJUNCTION INSTRUMENT
I be home with my family
father be bathroom
mother be kitchen
sister be school
sister drink Fanta

 Table 4.2 Event Database

 What follows are sample cases of our implementation. Each case shows a

different feature of our design. Our approach can be described as follows:

 For an input case (Input Table), find proper proposition(s) for that case (to be

displayed in the Output Table) by comparing it with pre-defined concepts in the memory

(Concept Database), determining a match concept from them, obtaining the necessary

information related to that match concept as its present situation in the current state of the

world (Event Database), and projecting the proposition of that concept as the new

proposition. Then display that new proposition in the Output Table and update the Event

Database with the information coming from the Input Table.

The program matches clauses by comparing their corresponding sections. For

example the sentences “I play soccer” and “Chris plays basketball” match because I and

Chris are both humans, and both soccer and basketball are games. The program uses the

Root Database to determine if the corresponding words have the same root or not (if they

share a common root before the level of concept), but the objects cannot move down for

further comparison. For example, “cooking pizza” means “cooking food” at the same

time, but “cooking food” does not always mean “cooking pizza.” The verb is the most

important attribute of a clause because it defines what that clause as a concept means;

18

therefore verbs must be the same to match. We can match the clause “I drink water” with

the clause “my mother drinks coffee”, but we cannot match the clause “I drink water” to

the sentence “I write poem.”

A. CASE 1: PROJECTION

1) Assume input clause from the Input Table is

INPUT TABLE:

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
 sister be home

 Table 4.3 Input Table

(See Figure 4.1 for a diagram of the complete set of data structures for this case)

2) Find matching “if” clauses in the Concept Database for that input clause.

- “Jason be library” (Concept Block 1)

- “Jason be classroom” (Concept Block 2)

- “I be library” (Concept Block 3)

Matching here means that, with the exception of the verbs (which are critical), the

words in each section of the input clause are either the same or share the same root with

the words in the same section of the corresponding “if” clause. For example the “if”

sentence of Concept Block 1 is “Jason be library.” Both “sister” and “Jason” are humans;

both “home” and “classroom” are locations, and both their verbs are “be.” Therefore the

input clause and that “if” clause match. The program uses the Root Database to determine

whether two words have the same root (before the level of “concept”) or not.

3) Determine which of the concept blocks have conditions that match their

“when” clauses to the Event Database. In our example, we now have three potentially

matching concept blocks in the Concept Database. At first the program tries the Concept

Block 1:

a) Create new condition clauses by replacing the subjects of “when” clauses with

the subject of the input clause:

19

The second clause of the Concept Block 1 (Jason be classroom) becomes “sister

be classroom.”

b) Match “when” clauses to clauses to in the Event Database. Subjects here are

critical in terms of matching because the program uses them to connect to the current

state of the world. Therefore, for two clauses to match, both their “subjects” and “verbs”

must be the same

 In our example, “I be classroom” matches to “I be home” (clause 1) and “sister

be classroom” matches to “sister be school” (clause 4).

c) Build a new concept block for current situation.

- “When I be home” (from the Event Database)

- “When sister be school” (from the Event Database)

- “If sister be home” (from the Input Table)

d) Number the words of both the new concept block and the old concept block

from the Concept Database:

NEW CONCEPT BLOCK:

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
 I be home when
 sister be school when
 sister be home if
 ? ? ? then

 1 2
 3 4
 3 2

 Table 4.4 Concept Block

CONCEPT BLOCK 1 (FROM CONCEPT DATABASE)

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
1 I be class when
1 Jason be class when
1 Jason be library if
1 Jason go library then

20

 1 2
 3 2
 3 4

 Table 4.5 Concept Block

Here the pattern of the Concept Block 1 does not match the pattern of the new

concept block. But the program will return to step “a” to try the next matching concept

block (Concept Block 2) from the Concept Database. Because its pattern is the same as

the pattern of the new concept block (see Table 4.6), the program continues to the next

step.

 CONCEPT BLOCK 2 (FROM CONCEPT DATABASE)

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
2 I be classroom when
2 Jason be library when
2 Jason be classroom if
2 Jason go classroom then

 1 2
 3 4
 3 2

 Table 4.6 Concept Block

e) If the pattern match is successful, generate a new proposition by replacing the

words in the “then” clause of the matching concept block from the Concept Database

with the corresponding words from the new concept block:

 The “then” clause of the Concept Block 2 is “Jason be classroom”. The number

of “Jason” in the pattern is 3, and the number of “classroom” is 2. Number 3 in the new

concept block represents “sister”, and number 2 represents “home.” As a result, the

“then” clause of the new concept block becomes “sister come home.”

4) Display the generated proposition in the Output Table and update the Event

Database for the present situation:

21

OUTPUT TABLE:

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
Case sister is home
Proposition sister come home

 Table 4.7 Output Table
EVENT DATABASE
SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
I be home with my family
father be bathroom
mother be kitchen
sister be home
sister drink Fanta

 Table 4.8 Event Database

 If the input were “sister be school” in the Input Table and “sister is home” in the

Event Database, the corresponding concept block would be Concept Block 1 and the

Output would be “sister go school” in the Output Table and “sister is school” in the Event

Database.

 If the input were “sister be library” in the Input Table and “sister is school” in the

Event Database, the corresponding concept block would be Concept Block 3 (because

there is no reference to me), and the output would be “sister go library” in the Output

Table and “sister is library” in the Event Database.

22

 FLOW DIAGRAM

 1
INPUT TABLE

2

SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
 sister be home

1
1
1
1
2
2
2
2
3
3
3
4
4
5
5

SU
I
fa
m
sis
sis

SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
I be home when
sister be school when
sister be home if
? ? ? then

SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
1 2
3 4
3 2
3 come 2

SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
sister come home

“sister”
replaces
“Jason”

3a

3c

4

3d

2

CONCEPTS DATABASE
SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
I be classroom when
Jason be classroom when
Jason be library if
Jason go library then
I be classroom when
Jason be library when
Jason be classroom If
Jason come class then
I be class when
I be library if
I go library then
I thirsty if
I drink water then
I enjoy taste if
I drink coke then

3b
EVENTS DATABASE
BJECT VERB OBJECT PLACE TIME CONJ INSTR
be home

ther be bathroom
other be kitchen
ter be school
ter drinking Fanta

NEW CONCEPT BLOCK
3

3e
CORRESPONDING CONCEPT BLOCK
SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
I be classroom when
Jason be library when
Jason be classroom if
Jason come classroom then
NEW CONCEPT BLOCK’S PATTERN
 CORRESPONDING CONCEPT BLOCK’S PATTERN

SUBJECT VERB OBJECT PLACE TIME CONJ INSTR
1 2
3 4
3 2
3 come 2
OUTPUT TABLE
 Figure 4.1 Flow Diagram

B. CASE 2: HIERARCHY IN PROJECTION

This case illustrates another feature of HCPA: Some concepts may share the same

results at different levels of detail. In addition, this case also runs the projection algorithm

for “then” clauses of concept blocks to accomplish a kind of backward chaining.

1) Assume the input clause from the Input Table is

 INPUT TABLE:

 SUBJECT VERB OBJECT PLACE TIME CONJUNC INSTRUMENT
 sister drink Fanta

 Table 4.9 Input Table

2) None of the “if” clauses in the Concept Database matches the input clause;

however two “then” clauses match.

- “I drink water” (Concept Block 4)

- “I drink Coke” (Concept Block 5)

Because both “Fanta” and “Coke” are subtypes of “beverage”, they match.

Because “Fanta” is a subtype of “water”, they also match (however if Fanta were a

supertype of water, they would not match). “I” and “sister” are both humans, so they

match.

3) Determine which of these concept blocks have “when” conditions that match

clauses in the Event Database. Because both Concept Block 4 and Concept Block 5 have

no “when” clauses defined in the example, the program skips this step.

4) Build a new concept block for the new case by updating the old concept block

from the Concept Database (the program updates the old concept block by numbering

each word in that concept block and projecting that number pattern to the new case as we

explained in Case 1):

- “if sister (gets) thirsty, then sister drink(s) water”

- “if sister enjoy(s) (its) taste, then sister drink(s) Fanta”

24

5) Display the results in the Output Table (if the conclusion clause is an “if”

clause, it is interpreted as a “proposition”; if it is a “then” clause, it is interpreted as a

“reason” for the “case”).

OUTPUT TABLE
 SUBJECT VERB OBJECT PLACE TIME CONJ INSTRUMENT
Case sister drink Fanta
Reason sister thirsty
Reason sister enjoy taste

 Table 4.10 Output Table

If the input case were “sister drink water”, the only corresponding concept block

would be the Concept Block 4 and the only output would be “sister (gets) thirsty” (water

is a supertype of Coke, therefore they do not match).

The more attributes a goal-state has, the more sophisticated the desired actions

are. For example, in the situation “I get hungry” a conclusion could be simply “I eat

food”. On the other hand, for the situation “I am hungry at school during morning” a

conclusion could be “I’m eating food in lunch-room”; and for the situation “I am hungry

at school during evening” it could be “I’m eating pizza in cafeteria”. Note that we use the

present progressive tense to define specific situations of specific people, whereas we use

the simple present tense to define general situations. (We used in our test program only

examples of simple present tense.)

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

 V: ASSOCIATING CONCEPTS WITH JAVA FUNCTIONS

Another application explored in our program was an intelligent window-based

image-processing program. We added the following new features to the architecture to

accomplish this task:

• Associating concepts with Java functions.

• Distinguishing instances from types within the Root Database so as to

increase vocabulary.

• Handling multiple words within each column entry.

• Providing a triggering mechanism among concepts.

• Updating the current state of the world by updating the Event Database.

The tables below explain each of these new features with the necessary data

structures for this program:

ROOT DATABASE:

ROOT TYPE INSTANCE ROOT TYPE INSTANCE
concept memory verb delete
concept verb verb is
concept particle verb are
concept conjunction verb draw
concept user verb paint
concept shape user User1
concept color user Yilmaz
concept function conjunction and
memory drive conjunction not
drive directory conjunction if
drive C conjunction then
drive D conjunction when
directory Dir1 particle in
directory Dir2 particle from
shape point particle to
shape line particle for
shape circle particle above
shape square particle below
point Point1 particle all
line Line1 particle none
circle Circle1 function OpenFile
square Square1 function DrawLine

27

color yellow memory File
color red file textFile
color blue file imageFile
verb open file File1
verb close file File2
verb copy point 20,20,70,70
verb cut point 10,10,50,50
verb create

 Table 5.1 Root Database

We divided “branch” in the Root Database into “type” and “instance.” For

example, “color” is a type, whereas “red” or “blue” are instances of that type.

Distinguishing instances from types more precisely defines the words and their

relationships with each other. Only instances can be actively used within the system;

types are helpers to recognize an instance. For example, a person cannot input “User1

open File” as a goal state because “File” is not an instance; however if a person enters

“User1 open File Lake.jpg”, the program can infer that “Lake.jpg” is an instance of type

“File”, allowing its information to be added into the Root Database even if it has not been

defined before. Hence, only “ground instances” can be used to define “if” and “then”

clauses in the Concept Database.

CONCEPT DATABASE
 SUBJECT VERB OBJECT PLACE TIME CONJUNC FUNCTION
1 User1 open File1 in Dir1 in C if
1 User1 File1 in Dir1 in C then OpenFile
1 drive is C so
1 directory is Dir1 so
2 directory is Dir1 when
2 drive is C when
2 User1 open File1 if
2 User1 open File1 in Dir1 in C then

3 User1 draw Line1 for 10,10,50,50
and for red if

3 User1 File1 for 10,10,50,50
and for red then DrawLine

color is red so
3 point is 10,10,50,50 so
4 color is red when
4 point is 10,10,50,50 when
4 User1 draw Line1 if

4 User1 draw Line1 for 10,10,50,50
and for red then

3

28
 Table 5.2 Concept Database

In this program we used “Function” as the last column of the Concept Database

instead of “Instrument”. Functions are used to associate a “then” clause to a Java

function; therefore, they can be found only in a “then” clause of a concept block.

Additionally, we added “so” as a new kind of clause into our concept block structure (in

Concept Block 1 and in Concept Block 3) to update the Event Database.

Concept Block 1 defines (lines 1 to 4) the concept “to open a specific file.” This is

translated as: “If a user (“User1”) opens a file (“File1”) in a directory (“Dir1”) and on a

drive (“C”), then the program uses the OpenFile function with those parameters. Then the

drive information is updated as “C” along with updating the directory information as

“Dir1” in the Event Database (by using “so” clauses). Concept Block 2 utilizes the

information Concept Block 1 generates. The “then sentence” of Concept Block 2 is the

same as the “if sentence” of Concept Block 1. This is translated as: “When the directory

information in the Event Database is “Dir1” and the drive information is “C”, and the

command is “open the file File1”, it is understood as "open the file “File1” in directory

“Dir1” and in directory “Dir2”.” Because this is a function-based application, the

program must activate a Java function in order to stop. Because the “then” clause of

Concept Block 2 does not contain a “Function”, the program uses the “then” clause as the

input case of a new iteration (which is the same as Concept Block 1). Thus Concept

Block 2 “triggers” Concept Block 1 while Concept Block 1 “triggers” the necessary Java

function (See Case 4 for further explanation of the “triggering mechanism”). Concept

Block 3 and Concept Block 4 use similar ideas to draw a line for a specific point and

color value.

The Event Database shows the “active” drive, directory, color, and point values

used in the system. Whenever a new file is opened or a new shape is drawn, its

information is reflected in the Event Database.
EVENT DATABASE
SUBJECT VERB OBJECT PLACE TIME
drive is C
directory is Dir1
color is red
point is 10,10,50,50

 Table 5.3 Event Database

29

A. CASE 3: ABILITY TO USE FUNCTIONS AND TO INCREASE VOCABULARY

This case illustrates how the program generates a proper Java function for an

input case by making the necessary inference. The program is able to accept new words

not initially defined in the Root Database, (thus it can increase its vocabulary), and to

update the Event Database.

1) Assume the input case from the Input Table is

 INPUT TABLE

SUBJECT VERB OBJECT PLACE
Yilmaz open file spiral.jpg in directory thesis and drive C

 Table 5.4 Input Table

The program parses each section of the input clause into individual words to

manage them. However the program does not include during parsing a word, such as

“file”, “directory”, or “drive”, which is a “type” rather than an “instance” of a root. The

program uses the “type” information to update the Root Database; for our current case,

the words “spiral.jpg” and “thesis” do not exist in the Root Database, so the program

adds the “spiral.jpg” as an instance of “file” and the “thesis” as an instance of “directory”

into the Root Database.

2) Find matching “if” clauses in the Concept Database. (Because this is a

function-based application, the program runs the projection algorithm only on “if”

clauses and not on “then” clauses). For our case, Concept Block 1 is the matching

concept block to the input clause.

3) Determine which of those concept blocks have conditions that match the

current state of the world. In our case we have only one matching concept block, which

does not have a “when” clause. Therefore the program skips this step.

4) If the “Function” attribute of that concept block is empty, use its “then” clause

as the new input case and return to step 1; otherwise, trigger that function by utilizing the

information within that “then” clause as the parameter information for that function.

Because the “Function” attribute of Concept Block 1 is not empty (OpenFile), the

program triggers that function with its parameter values. Here the function gets its

30

parameter values from the “then” clause to create the path information for that file

(C:\\thesis\\spiral.jpg).

5) Update the Event Database with the “so” clauses in the matching concept

block. The program generates new condition clauses by substituting “drive is C” and

“directory is Dir1” (the “so” clauses of Concept Block 1) with “drive is C” and “directory

is thesis” (“C” and “thesis” are the active drive and directory names for this case) by

utilizing their patterns.

B. CASE 4: TRIGGERING MECHANISM

This case illustrates how the output of an input case can be an input case for

another situation. If the “Function” attribute in the Output Table is empty, that output

clause is accepted as the new input clause of the Input Table.

1) Suppose the Input clause is:

 INPUT TABLE

SUBJECT VERB OBJECT PLACE
Yilmaz open spiral.jpg

 Table 5.5 Input Table

2) Find matching “if” clauses in the Concept Database.

The only matching concept block for that input clause is Concept Block 2.

3) Determine which concept blocks whose conditions exist in the Event Database.

The “when” clauses of Concept Block 2 are “directory is Dir1” and “drive is C”.

Each has a corresponding clause in the Event Database. This means that Concept Block 2

matches the current situation.

4) If the “then” clause of that concept block contains “function”, trigger this

function, or else use the updated “then” clause as the new input clause and return to the

step 1.

Here the “then” clause of Concept Block 2 does not contain “function”; therefore,

the program uses the “then” clause to build the new input clause. The new input clause

31

becomes: “Yilmaz open spiral.jpg in thesis in C”, which is, as we already know, the

corresponding input clause of Concept Block 1. So, Concept Block 2 triggers Concept

Block 1.

Similarly for the input:

 INPUT TABLE

SUBJECT VERB OBJECT PLACE
Yilmaz draw Line1 for point 30,40,150,100 and for color blue

 Table 5.6 Input Table

The program will use Concept Block 3 to draw a blue line for the point values

updating the Event Database as “color is blue” and “point is 30,40,150,100”. After that,

entering the command “Yilmaz draw Line1” will match Concept Block 4 which triggers

Concept Block 3 to draw a line.

If we had implemented this program by just adding the associative element “of”

(such as “color of Line1” or “directory of Dir1”), we would have defined and kept track

of multiple elements within the system. For example, the Event Database might have

said: “Color of Line1 is Blue, Color of Circle1 is Red.” Similarly we were able to use the

conjunction “and” to define multiple operations at once, such as: “User1 draw Line1 and

Circle1.”

C. SEEING INTELLIGENTLY

The goal of our image-processing application is a program capable of drawing

and recognizing shapes on a picture and converting them into 3-D models by associating

shapes to concepts in a highly sophisticated way; however, we only had time to prepare a

design for such a project. Initially we defined all the necessary words:

Verbs: Draw, paint, find, add, divide, have, be, join, intersect, read.

Objects: Region, area, surface, point, pixel, line, arc, edge, square, rectangle, box,

cylinder, endpoint, jointpoint, part, piece, shape.

Properties and Particles: Straight, round, length, width, height, color, number,

angle, all, none, same, different, true, false, more, and, or, not, of, at, light, dark, equal,

thick, thin, wide, narrow, closed, perpendicular.
32

Locations: Bottom, top, right, left, over, beneath, between, inside, outside, side,

next to.

Questions: What, where, how, which, how many, whose.

Values: Number, angle, distance and scale.

In order to explain the concepts to a computer program, we describe every

concept in plain English first:

• To draw a point: To assign color to a specific pixel.

• To draw a line: To paint adjacent pixels between two points. A line has a

thickness of a particular number of pixels.

• To draw a straight line: The angle between adjacent pixels is always the same.

• To draw an oblique line: The angle between adjacent pixels is varying.

• To draw a circle: To paint all pixels at the same distance of a particular point.

• To draw an arc: To draw a piece of circle.

• To find a line: To find pixels whose adjacent pixels in one direction are in the

same color.

• To find surface: To find all adjacent pixels with the same color.

• To find angle: To find about the pieces of circle when two lines intersect.

• To draw a shape: To draw an object with its specific name, length, width, height,

color and size values. To retrieve the information of the edge, the bottom or the

top of a shape and the distance between shapes.

• To intersect: To have two shapes share the same pixels.

• To find the edge of a shape: To find the line on which adjacent pixels have

different colors.

After describing these concepts, we can start building concept blocks to describe

this world of drawings. Below are some examples:

33

If I draw square1
Then I draw line1 and
Then I draw perpendicularly line2 on line1’s endpoint and
Then I draw perpendicularly line3 on line2’s endpoint with line1’s opposite direction and
Then I draw perpendicularly line4 on line3’s endpoint with line2’s opposite direction and
Then I have a closed shape
So square1 has four equal lines and
 line1 is part of square1

If line1’s color is not red
Then line1’s color is blue (has a different color value in the pattern)

If line1’s color is blue and
 line2’s color is blue
Then their color is same

If I draw line1 and
 I draw line2
Then I draw two lines

The challenging part of this project is to integrate all the pieces of concepts into a

whole picture. What is needed is a more complicated inference structure and triggering

mechanism. For example, at the end, we want the program to be able to answer this

question “If I draw a square then I have four lines; how many lines do I have, if I draw a

triangle?” The program must be able to connect the square, triangle and math concepts to

get the correct answer. Thinking is, in a sense, only asking the proper questions at the

proper level.

Ultimately we hope the program will do the following jobs:

• Draw a 5cm long red line from pixel1 to pixel2.

• Find all lines whose color is not blue and whose length is greater than 3 cm.

• Draw square1 at the center.

34

• Draw cylinder1 below square1.

• Find the squares on the picture.

• Find the boxes on the picture and retrieve 3-D values.

• Find the cylinder1 on the picture, retrieve its 3-D values and scale it to double
size.

• Find the human face on the picture; convert it into 3-D model by comparing and

mapping it onto the default 3-D face model in the memory. (Humans can see a

two- dimensional picture of a human being on a newspaper and imagine it three-

dimensionally in their minds).

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

 VI: FUTURE WORK

This work is about an architecture mimicking human’s way of thinking by

analogy as closely as possible. In order to achieve this goal, we could add the following

features to our system.

1) Similar to Carbonell’s Logical Transformation introduced in Chapter II,

dividing a main goal into subgoals and associating them with the main goal with a more

complicated association and triggering mechanism among concepts.

2) A probabilistic decision making mechanism by defining the Java functions in a

probabilistic way similar to the Copycat computer model explained in Chapter II. If one

drew five circle shapes onto a paper, none of them would be exactly the same; we are not

thinking in a black-and-white way.

3) As another aspect, making a decision means choosing the most optimum and

valuable option among others. Our algorithm could have a specific value system to define

the importance of each new case. We are already doing some of this in our daily

statements: “I like watching TV, but I have to study for my exam tomorrow (Because if I

am not successful on the exam, I will be unhappy). Here “like” shows pleasure, “have to”

shows importance, and “unhappy” shows the result. Before offering a conclusion, we ask

the question “why” at each step until we reach a result. To add this functionality to our

algorithm, we must add another section with the name “because” into our block structure.

4) A holographic database mechanism to store information. We could build a

structured knowledge around a seed idea by asking the most basic questions “who”,

“what”, “where”, “when”, “how”, and “why.” Each question will get more and more

sophisticated expanding like a spiral building a holographic structure containing all

possible aspects of concepts around that seed idea.

5) An English parser to interface our architecture is necessary to fully utilize the

power of natural language understanding.

37

6) Finally, we need to cover the most basic 300-400 concepts defining reality into

our architecture. This must have a self awareness with its own personality and its own

time perception (past-present-future).

38

VII: CONCLUSION

We believe that the relatively simple form of our algorithm for concept learning

by analogy will help to better understand learning. When we introduced this architecture

to other people (most of whom were outside the field), most were convinced that they

could easily understand the main idea and that they were already using the approach in

their daily lives. With this general architecture and a versatile set of concepts, we could

possibly interface our system to robotics, to operating systems, to aircrafts, to large

database systems, to search engines, and to all other possible applications. Our work

could help humans to understand themselves, their mind and psychology, and their

strengths and weaknesses. We can study about abstract or concrete concepts asking some

basic questions. For example, what does “to love” mean? How can “to love” be explained

to a computer program? Perhaps this mechanism would reflect like a mirror much of the

human mind, heart, and soul.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

 LIST OF REFERENCES

Allen, J., Natural Language Understanding, 1983.

Atkin, S., Prolog as a Theorem Prover, 1999.

Bernstein, T., The Careful Writer: A Modern Guide to English Usage, New York:
Atheneum, 1977.

Carbonell, J. G., Learning By Analogy: Formulating and Generalizing Plans From Past
Experience, Carnegie-Mellon University, 1993.

Fogiel M., The Psychology Problem Solver, REA, 1999.

Hofstadter, D., The CopyCat Project: An Experiment in Nondeterministic and Creative
Analogies, Mass. MIT, 1984.

Luger, G. & Stubblefield, W., Artificial Intelligence, Addison-Wesley, Third Edition,
1999.

Miller, G. & Beckwith, R. & Fellbaum, C. & Gross, D. & Miller, K., Introduction To
WordNet: An On-Line Lexical Database, 1993.

Mitchell M., Analogy-Making as Perception, The MIT Press, 1993.

Pinker S., Words and Rules, Perennial, 2000.

Schank, R.C. & Rieger, C.J., Inference and the Computer Understanding of Natural
Language, Artificial Intelligence, 5(4): 373-412, 1974.

The American Heritage Dictionary, Third Edition, 1992.

Wallis, S. & Moss, S., Efficient Forward Chaining for Declarative Rules in a Multi-
Agent Modeling Language, 1995.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. LCDR Barker
Outgoing NPS Coordinator
Naval Postgraduate School
Monterey, California

4. LCDR Hunter

Incoming POC For IW Curric
Naval Postgraduate School
Monterey, California

5. LCDR Stevenson

Incoming POC For Comp-Net. Topics
Naval Postgraduate School
Monterey, California

6. Professor Neil Rowe

Department of Computer Science
Naval Postgraduate School
Monterey, California

7. Professor John Hiles
Department of MOVES
Naval Postgraduate School

 Monterey, California

8. Kara Kuvvetleri Komutanligi
Kutuphane
Bakanliklar, Ankara, TURKEY

9. Kara Harp Okulu Komutanligi

Kutuphane
Dikmen, Ankara, TURKEY

10. Bilkent Universitesi Kutuphanesi

Bilkent, Ankara, TURKEY

43

44

11. Orta Dogu Teknik Universitesi Kutuphanesi

Balgat, Ankara, TURKEY

12. Bogazici Universitesi Kutuphanesi
Bebek, Istanbul, TURKEY

13. Yilmaz Degirmenci
Sarma Sok. 13/8
Iskitler, Ankara, TURKEY

	I: INTRODUCTION
	III: DATA STRUCTURES FOR OUR INFERENCE PROGRAM
	VII: CONCLUSION
	INITIAL DISTRIBUTION LIST

